skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hawkins, Thomas_W"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Recently developed methods for high resolution birefringence measurement have been applied to distinguish between the surface and interior birefringence of silica glass fibers as a function of drawing temperature and initial surface condition for two types of silica glass with different water contents. Fibers were drawn in a water‐free argon environment using graphite heating elements. It was found that fibers drawn at lower temperatures resulted in greater, interior birefringence, in agreement with previous reports. Additionally, it was found that in the case of low‐water silica glass, flame polishing via oxygen–hydrogen mixture and drawn into fibers at lower temperature resulted in significant surface compressive stress upon drawing. This compressive stress may be the result of surface stress relaxation in silica glass that occurs in the presence of water during fiber drawing. In silica glass that contains greater internal hydroxyl impurity concentrations, the interior birefringence as well as the surface stress relaxation was significantly reduced under the same fiber drawing conditions. Characterization of such stress responses provides insight into the effects of common processing techniques as well as impresses the significance of preform processing for consistent fiber production. 
    more » « less
  2. An all-solid transverse Anderson localizing optical fiber (TALOF) was fabricated using a novel combination of the stack-and-draw and molten core methods. Strong Anderson localization is observed in multiple regions of the fiber cross section associated with the higher index strontium aluminosilicate phases randomly arranged within a pure silica matrix. Further, to the best of our knowledge, nonlinear four-wave mixing is reported for the first time in a TALOF. 
    more » « less